Klasifikasi Citra Daging Sapi dan Daging Babi Menggunakan CNN Arsitektur EfficientNet-B6 dan Augmentasi Data

نویسندگان

چکیده

In daily life, beef often serves as a staple food for humans. However, the high and expensive price of has prompted traders to adulterate it with pork sake profit. Such adulteration serious implications in Islamic religion, where not all types meat are considered halal (permissible consumption), such pork. As result, consumers remain unaware that they purchase been adulterated At glance, both exhibit similar appearance texture, making them difficult differentiate. This research aims classify using deep learning model Convolutional Neural Network (CNN) method, combined data augmentation. The used is EfficientNet-B6 variations testing scenario. include ratio training data, rates, optimizer EfficientNet-B6. Data augmentation performed techniques random rotation, shifting, image scaling, vertical horizontal flipping, nearest pixel filling. Evaluation results confusion matrix show achieves highest accuracy classes beef, pork, samples at 92.00%, while without an 91.67%. from this experiment, best scenario avoid misclassifying can be obtained. involves augmentation, 90:10 split, SGD optimizer, rate 0.01, which precision class 96.05%. findings demonstrate use on images improve model's performance, 0.01 exhibits performance classifying images.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Klasifikasi Data Cardiotocography Dengan Integrasi Metode Neural Network Dan Particle Swarm Optimization

Backpropagation (BP) adalah sebuah metode yang digunakan dalam training Neural Network (NN) untuk menentukan parameter bobot yang sesuai. Proses penentuan parameter bobot dengan menggunakan metode backpropagation sangat dipengaruhi oleh pemilihan nilai learning rate (LR)-nya. Penggunaan nilai learning rate yang kurang optimal berdampak pada waktu komputasi yang lama atau akurasi klasifikasi yan...

متن کامل

Desain dan Implementasi Face Recognition dan Live Streaming pada Sistem Digital Assistant untuk Staf Medik Fungsional menggunakan Google Glass

Abstrak— Dalam era globalisasi saat ini, rumah sakit dituntut untuk meningkatkan kinerja dan daya saing sebagai badan usaha dengan tidak mengurangi misi sosial yang dibawanya. Hal ini berarti bahwa rumah sakit harus menerapkan kebijakankebijakan strategis agar mampu secara cepat dan tepat dalam pengambilan keputusan sehingga dapat menjadi organisasi yang responsif, inovatif, efektif, dan efisie...

متن کامل

Yang Dan

Yang Dan Howard Hughes Medical Institute and the University of California, Berkeley Yang Dan is a Paul Licht Distinguished Professor in Biology and an Investigator of the Howard Hughes Medical Institute at the University of California, Berkeley. She grew up in Beijing and studied physics as an undergraduate student at Peking University. She conducted her PhD research in the lab of Mu-ming Poo a...

متن کامل

Order Dan

Proof. There are three cases: (1) A and B are in the same column. Then, since in each column we picked the shortest student, A is shorter than B. (2) A and B are in the same row. Then, since in each row we picked the tallest student, B is taller than A. (3) A and B are neither in the same row, nor in the same column. Let C be a student who is in the same row as A and in the same column as B. Th...

متن کامل

Dan Sperber

An objection to the memetic approach to culture Memetics is one possible evolutionary approach to the study of culture. Boyd and Richerson's models (1985, Boyd this volume), or my epidemiology of representations (1985, 1996), are among other possible evolutionary approaches inspired in various ways by Darwin. The memetic approach is based on the claim that culture is made of memes. If one takes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Jurnal Sistem Komputer dan Informatika (JSON)

سال: 2023

ISSN: ['2685-998X']

DOI: https://doi.org/10.30865/json.v4i4.6195